

How to extend battery life with PBM tools

What practices are the best, depend on the type of battery.

For all battery types, degradation occurs faster at higher temperatures.

October 24, 2018

Batteries:

Lithium-ion

When storing, lithium batteries degrade more while fully charged than if they are 70% charged. Optimal temperature for storing is about 15°C.

Degradation in lithium-ion batteries is caused by an increased internal battery resistance due to cell oxidation.

If Li-ION cells are discharged below a certain voltage a chemical reaction occurs that make them dangerous for recharging.

Batteries:

NiCd

NiCd cells must be fully discharged, or else the battery loses capacity over time due to a phenomenon known as "memory effect".

Once a month (once every 30 charges) is recommended fully discharged NiCd battery.

Batteries:

Lead-acid

These batteries employ a sulfuric acid electrolyte.

It can be generally be charged and discharged without exhibiting memory effect.

Degradation is caused by an increased internal battery resistance due to sulfation.

Sulfation:

Sulfation is a chemical reaction in the battery which deposits a layer of sulfates on the lead. It will occur over time, specially when a battery stay unused for a long time.

Part of SO4 iones creates crystals on the plates and increase the internal resistance of the battery that avoid it to be properly charged.

In fact when the charging cycle start, the voltage very fast reach the gassing point value and normal charger immediately enter the "final charge" state.

Thanks to its cooperation with battery manufacturers, leaders in world wide market, PBM developed tools to recognize and treat the suplhated batteries.

P.B.M. tools for Battery Regeneration:

P.B.M. dedicated software:

PBM customers can use for free PC software which communicate with tools for DESULPHATION:

BLTVIEW®

HFVIEW®

P.B.M. Battery Regeneration BLT^o - <u>the</u> discharger

www.pbmbatterychargers.com

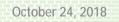
BLT[°] - the discharger OWERVIEW

The BLT is a professional tool, which allow you to evaluate the efficiency of the battery, performing discharge, sending command to charger to charge and follow cyclic tests.

It is very useful tool for batteries maintenance and regeneration.

Not only, the BLT in conjunction with the charger HF9 can performe desulphation and recovery capacity of battery.

October 24, 2018


BLT° - the discharger FEATURES

The presence of pre-programmed TESTs, TEST5h and TEST10h, makes BLT easy to use for testing Lead acid or GEL batteries.

Other available tests, like constant current or constant voltage, allow to use the BLT as an active load in order to perform functional and stress testing of Chargers or Power Supply.

The battery test is configured by:

nominal battery voltage, rated capacity, discharge time, minimum voltage, number of cycles, time for pause and the sampling time of the graph.

 BLT° - the discharger RANGE

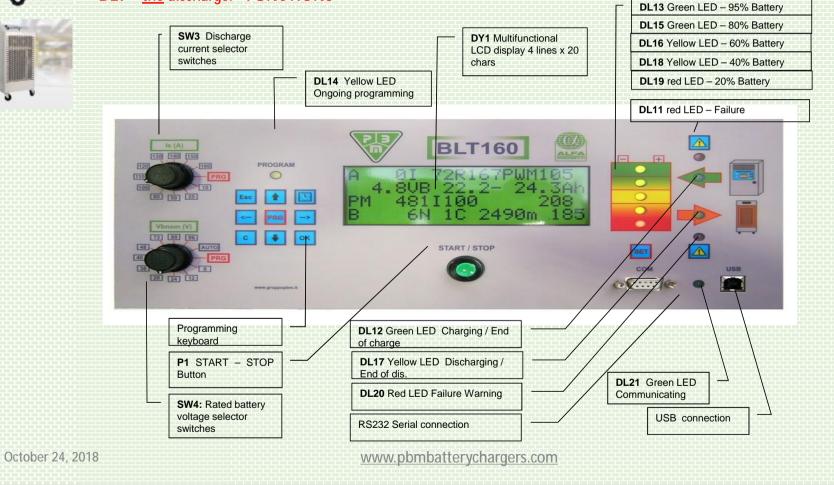
The BLT range includes 4 models:

BLT160 $(4V \div 96V / 2A \div 160A)$ BLT125 $(4V \div 120V / 2A \div 125A)$ BLT300 $(4V \div 96V / 2A \div 300A)$ BLT250 $(4V \div 120V / 2A \div 250A)$ BLT3K $(4V \div 120V / 2A \div 160A)$ limited power to 3 KW, the maximum discharger current is a function of the battery voltage

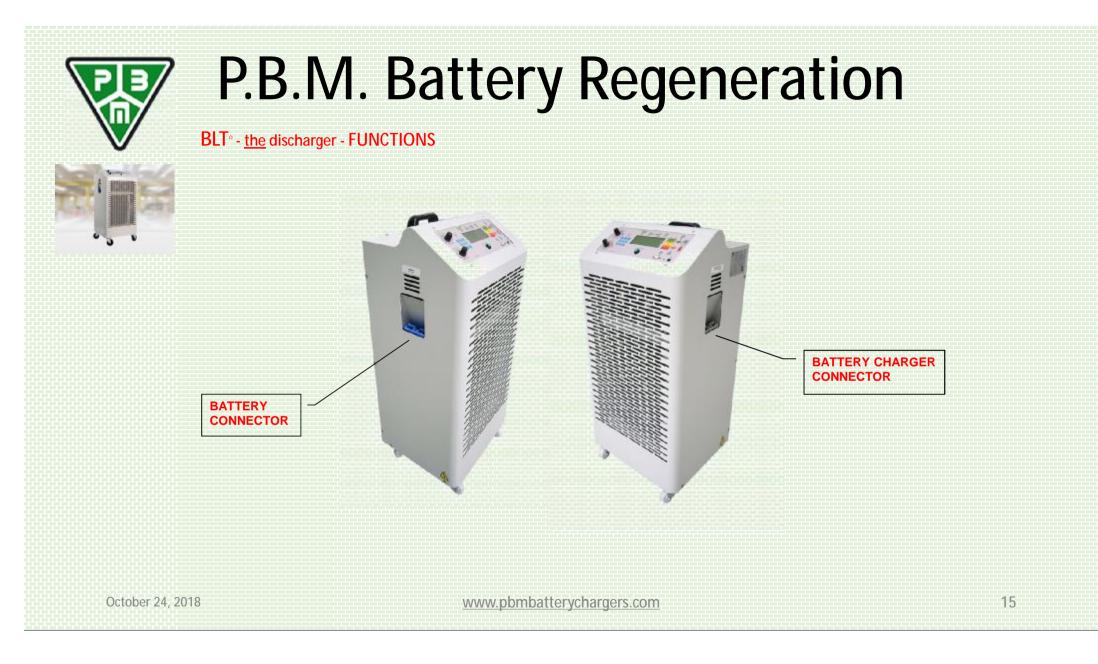
BLT[•] - <u>the</u> discharger SOFTWARE BLTVIEW®

The BLT comes with the BLTVIEW[®], free of charge dedicated software, useful for programming the work of BLT and download the data for the last 150 cycles, as well as graphs of voltages and currents of the last cycles (2400 samples of graphic memory).

The BLTVIEW[®] allows you to manage and explore the database of cycles performed, evaluating the information, print out detailed reports with all information relating to charging and discharging of the battery, drawing up reports that show graphics with the resulting capacity after each of the test cycles.



BLT° - \underline{the} discharger - FUNCTIONS


- Programming rated voltage and discharge current of the battery;
- Automatic management the stages of charging and discharging by connecting a charger;
- Complete control functions from operator interface;
- Select test mode:
 - Ø Test efficiency 5h (TEST5h)
 - Ø Test efficiency in 10h (TES10h)
 - Ø Free Cycles (CYCLES)
 - Ø Free Cycles with a final test 5/10h (C + T5 / C + T10)
 - Ø Test at constant current / constant voltage (ICOST / VCOST)

BLT° - the discharger - FUNCTIONS

14

BLT° - the discharger - FUNCTIONS

When turn on BLT and press PRG key on the keyboard, is possible set next parameters:

= Battery voltage

RatAh Discl

RatV

= Battery capacity

= Discharge current

DT N.modoc=nn STV

- = Discharge time= Test type (modoc) and cycles number (nn)
- = STopVoltage, voltage for STOP discharging

gg/mm/aa hh:mm PROG1

RatV=**xxx**V RatAh=**bbbb**

DiscI=aaaA DT=sshttm

N.modoc=nn STV=v.vv

 BLT° - the discharger - FUNCTIONS

When pressing PRG, the system enters the PROG 2 window:

MaxCT=**aa**h**bb**m PROG2

MinCT=cchddm Mag=ee%

PTaC =ffhggm

PTaD=iihllm StDrrm

- MaxCT = Maximum charge time (if this time is exceeded, a charge fault is reported)
- MinCT = Minimum charge time
- Mag = Charge increase
- PTaC = Time pause after charge
- PTaD = Time pause after discharge
- StD = Time of diagrams sampling

BLT° - the discharger - FUNCTIONS

When pressing PRG, the system enters the PROG 3 window:

gg/mm/aa hh:mm PROG3

Notes:nnnnnnnnnnnnn

nnnnnnnnnnnnnn

gg/mm/aa hh:mm b.....b n.....n

= current date

- = current time
- = Battery Identification Code (16 characters)
- = Generic Notes field (32 characters)

BLT° - the discharger - FUNCTIONS

Setting of modes of operation:

MODOC	DESCRIZIONE	ISCAR	TS	VST	TCmin	TCmax	TPCar	TPScar
MODOC	DESCRIZIONE	(A)	(h:m)	(V/el)	(h:m)	(h:m)	(h:m)	(h:m)
TEST	Test liberi	Ahnom/5	5:00	1.70	3:00	24:00	1:00	0:30
CICLI	Cicli liberi	Ahnom/5		1.85	0:01		0:05	0:02
TEST5	Test 5h fissi	Ahnom/5		1.70	3:00	24:00	1:00	0:30
TES10	Test 10h fissi	Ahnom/10	10:00	1.70	3:00	24:00	1:00	0:30
	N-1 cicli liberi +	Ahnom/5		1.85	0:01		0:05	0:02
C+T5	1 Test 5h fisso	Ahnom/5	5:00	1.70	10:00	16:00	1:00	0:30
	(car + scar + car)	Annom/5	5.00	1.70	10.00	10.00	1.00	0.30
	N-1 cicli liberi +	Ahnom/10		1.85	0:01		0:05	0:02
C+T10	1 Test 10h fisso	Ahnom/10	10:00	1.70	10.00	16:00	1.00	0:30
	(car + scar + car)	Annon/10	10.00	1.70	10:00	10.00	1:00	0.30
	Only CONST.							
CONSTI	CURRENT	RatAh/5		1.85	0:01		0:05	0:02
	DISCHARGE							
	Only CONST.							
CONSTV	VOLTAGE	RatAh/5	**.**	RatV	0:01		0:05	0:02
	DISCHARGE							

BLT° - the discharger - FUNCTIONS

StV	BAh	Notes
<=1.70	0	100% discharged battery
1.71÷1.79	1÷19 %	99% to 81% discharged battery
=1.80	20%	80% discharged battery
>1.80	ratAh	No variation

General operation features:

When connecting a new battery, its current capacity is made equal to the set rated value.

Before starting a test cycle (i.e. while still in the START mode), and provided that a battery is connected, the current battery capacity can be set by pressing SET. Every time a button is pressed, the battery capacity increases by 10% up to the limit RatAh value. On exceeding the limit value, the system returns to 0%. If the No. modoc cycle number is set to 0, only is a single discharge performed, irrespective of the current battery capacity. During the charging process, the Mag% parameter allows to take into account the not-unitary performance of the battery recharge (programming page PROG2, see page 6). The Ahs actually delivered to the battery are calculated as follows: AhCar = Ah / (1+Mag%)

For example: with Ah=600 and Mag%=5, the AhChar value is 571. In order to reinstate 600 Ahs into the battery, it is necessary to charge AhCar * (1+Mag%), that is 630 Ah. The discharge stage ends either 1 minute after the stop voltage (STV) is reached or immediately, in case the voltage value drops below STV –0.01 V/cell.

For example: in case STV= 1.70, the discharging process stops immediately at 1.69 V/cell.

When reaching the stop voltage, depending on the voltage value, the current battery capacity is automatically reset.

BLT° - the discharger - FUNCTIONS

TEST, TEST5 and TEST10 MODES

All of these modes are suitable to fully evaluate the efficiency of batteries in good state.

The TEST5 and TEST10 modes automatically set all parameters for a 5 or 10 hours discharge testing respectively.

Discharge stage: discharged capacity (DIS.Ah) is checked throughout every cycle.

The EFFICIENCY parameter is then calculated as follows:

EFFICIENCY = DIS.Ah*100/RatAh.

Charge stage: charged capacity (CH.Ah) is checked throughout every cycle.

When the minimum charge time (i.e. MinCT) is reached, if CH.Ah=RatAh, the system switches to the following time pause stage. Afterwards, it proceeds to the discharge stage.

If the CH.Ah>=RatAh condition is not reached within MaxCT, a failure indication is given.

The test proceeds anyway. However, the battery might not provide the required discharge Ahs any longer, thus causing the calculated EFFICIENCY parameter not to be relevant.

If the charge stage is completed within the following test cycles, the fault is automatically reset and proper calculation of the EFFICIENCY parameter is restored.

In the TEST5 and TEST10 modes, parameters are set as shown in Table G.1.

October 24, 2018

P.B.M. Battery Regeneration HF9° - <u>the</u> universal charger

www.pbmbatterychargers.com

HF9° - the universal charger OWERVIEW

230VAC, 400VAC, 440VAC and 480VAC High Frequency Multitension Battery Charger. It allows to work on 2V to 120V batteries. Equipped with 8 selectable charge profiles and a dedicated software that allows an in-depth analysis of the charging data. Available in different versions with powers of 9, 12 and 16KW.

HF9° - the universal charger FEATURES

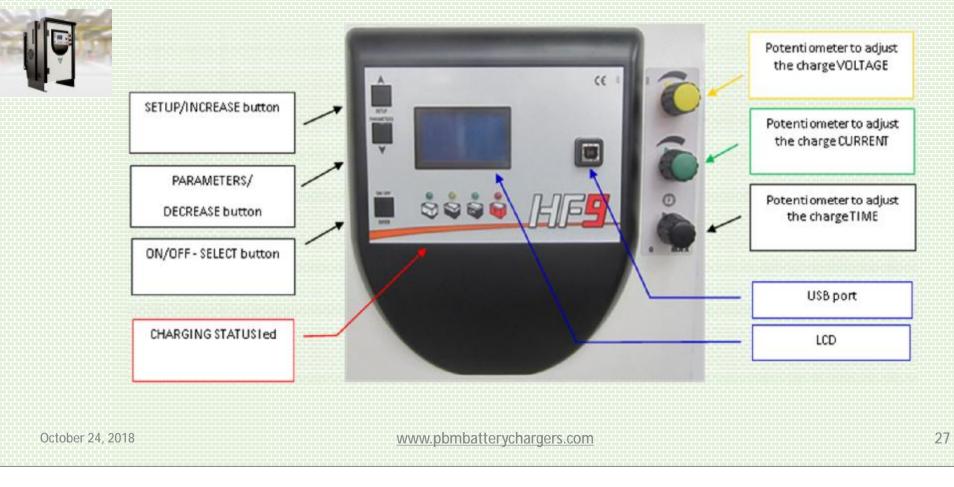
- Ø Three Phase 400VAC +/-10% 9KW power
- Ø Available on request 230/440/480VAC 3phase
- Ø Suitable for battery from 2-96V max 80A
- Ø Available on 12Kw and 16KW power.
- Ø Microprocessor-controlled Charging process
- Ø Different types of curves:
- Ø CYCLIC P, CYCLIC Pb GEL, CYCLIC NICd
- Ø CYCLIC LIPO, CYCLIC AGM, DESULPHATION
- Ø Multifunctional LCD Display
- Ø Failure diagnostic by means of LED's and LCD
- Ø Protection against battery polarity inversion
- Ø Stored charges

HF9° - the universal charger RANGE

Model						
9KW	2-48V max 150A	2-80V max 90A	2-120V max 60A			
16KW	2-48V max 250A	2-80V max 160A	2-120V max 100A			

Other specials models availables on request

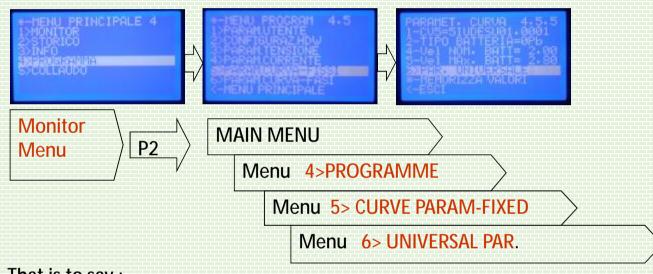
October 24, 2018


P.B.M. Battery Regeneration

$HF9^{\circ}$ - \underline{the} universal charger FUNCTIONS

ID	Abbreviation	Name	Type of curve	Description
1	1 Pb ST 9UN	Pb Std cyclic	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 6xInom and 8xInom
2	2Pb ST+ 9UN	Pb Std Plus	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 8xInom and 10xInom
3	3 Pb GEL 9UN	Pb GEL	IUIUaE	Cyclic charging curve for Pb GEL battery with a capacity between 6xInom and 8xInom
4	4 Gel HAZE 9UN	GEL HAZE	IUUO	Cyclic charging curve for Gel HAZE battery
5	5 IU Des 9UN	Pb Desulphation	IUa	Charging curve for desulphation of Pb acid battery
6	6 AG DIS 9UN	AGM DISCOVERY	IUIO	Cyclic charging curve for AGM DISCOVERY battery
7	7 Ni Cd 9UN	NiCd	IUIUa	Cyclic charging curve for NiCd battery
8	8 Li Po 9UN	Lipo	IUa	Cyclic charging curve for Lithium-polymer battery

HF9° - the universal charger FUNCTIONS



HF9° - the universal charger FUNCTIONS

HF9° - the universal charger FUNCTIONS

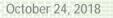
That is to say : From the Monitor menu, you can access the MAIN MENU by pressing P2 Select menu 4>PROGRAMME Select menu 5> CURVE PARAM-FIXED Select menu 6>UNIVERSAL PAR.

October 24, 2018

P.B.M. Battery Regeneration <u>BATTERY DESULPHATION</u> ü Step 1: SULPHATION DETECTION ü Step 2: DESULPHATION CYCLES

ü Step 3: CAPACITY RECOVERY

1. SULPHATION DETECTION


1. SULPHATION DETECTION

To recognize a Sulphated Battery the first STEP is to perform a single cycle of Discharge and Charge using the Standard Lead acid profile and verifying how fast the discharger reach the Vstp and later the charger reach the Final Charge.

RULE :

- A Sulphated Battery is recognized when:
- The discharge reach in few seconds the STOP Voltage;

- During the charge the charger in few seconds reaches the gassing point and immediately enter the Second stage (YELLOW Led ON).

1. SULPHATION DETECTION

We program the BLT for a TEST5 with 1 cycle, with the battery status to be plenty (all 5 leds inside the battery simbol are ON and the AhB is equal to the nominal C5 capacity: in this way the BLT will start with a Discharge.

MODOC	DESCRIZIONE	ISCAR (A)	TS (h:m)	VST (V/el)	TCmin (h:m)	TCmax (h:m)	TPCar (h:m)	TPScar (h:m)
TEST5	Test 5h fissi	Ahnom/5	5h	1.70	3:00	24:00	1:00	0:30

1. SULPHATION DETECTION

For Example : for a 48V 600 Ah PROG1 : TEST5 = 5, 1,70V, 5h00, 120 A PROG2 : MaxCT = 13h, MinCT = 10h A typical charging time can be calculated as: - C5 / Ch.Current * 1,1 + 4h We can than calculate the MinCT for this value and the MaxCT with 3h more.

gg/mm/aa hh:mm PROG1 RatV= 48V RatAh= 600 DiscI=120A DT= 5h00m N.TEST5= 1 STV=1.70

1. SULPHATION DETECTION

We program the HF9 for profile STD (curve 1) or ST+ (curve 2) depending on the ratio beween Battery Capacity and Charger Current:

Profile 1 STD : when the Capacity is between 6 and 8 time the Charger current Profile 2 ST+ : when the Capacity is between 8 and 10 time the Charger current When possible we set the charger current to a current = C5 /6 For example 48V 600 Ah

- Voltage = 48V
- Current = 100 A

- Time = this parameter is not used in Cyclic charge

ID	Abbreviation	Name	Type of curve	Description
1	1 Pb STD U01	Pb Std cyclic	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 6xInom and 8xInom
2	2Pb ST+ U01	Pb Std Plus	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 8xInom and 10xInom

2. DESULPHATION CYCLES

2. DESULPHATION CYCLES To desulphate the battery it is important to perform 1-2 cycle of discharge followed by a very slow recharge.

October 24, 2018

2. DESULPHATION CYCLES

We program the BLT for a TEST5 with 1 cycle, with the battery status to be plenty (all 5 leds inside the battery symbol are ON) and the AhB is equal to the nominal C5 capacity: in this way the BLT will start with a Discharge. Since the charging current is 1/30 C5, it is important to Set on the BLT. MaxCT to 40h and MinCT to 36h so that the charger have enough time to fill the battery.

For Example : for a 48V 600 Ah PROG1 : TEST5 = 1, 1,70V, 5h00, 120A PROG2 : MaxCT = 40h, MinCT = 30h

gg/mm/aa hh:mm PROG1	MaxCT= 40 h 00 m PROG2
RatV= 48 V RatAh= 600	MinCT= 30h00 m Mag= 10 %
DiscI= 120 A DT= 5 h 00 m	PTaC = 01 h 00 m
N.TEST5= 1 STV=1.70	PTaD= 00 h 30 m StD 1 m

2. DESULPHATION CYCLES

We program the HF9 for profile 5 DES (curve 5) Charging Voltage = Battery Nominal Voltage Charging Current = C5 / 30 Charging Time = 36h

The time is greater than 30h since we need to perform the overcharging factor. In addition it can happen that, even with a low current, at the beginning the battery reach 2,7Vc so that the charger goes in Voltage limitation, reducing the output current. This fact would prolong the charging time of 2-3h.

IC)	Abbreviation	Name	Type of curve	Description
5		5 IU Des U01	Pb Desulphation	IUa	Charging curve for desulfation of Pb acid battery

3. CAPACITY RECOVERY

3. CAPACITY RECOVERY

After the desulphation charges, 3-5 cycles of standard charge are used to complete the capacity recovery

October 24, 2018

3. CAPACITY RECOVERY

We program the BLT for a TEST5 with 5 cycle, with the battery status to be plenty (all 5 leds inside the battery symbol are ON) and the AhB is equal to the nominal C5 capacity: in this way the BLT will start with a Discharge and repeat cycles made of DISCHARGE and CHARGE.

At each cycle we will see the discharged capacity growing, and we will stop the test when between a cycle and the following we see that the battery is not improving anymore.

MODOC	DESCRIZIONE	ISCAR (A)	TS (h:m)	VST (V/el)	TCmin (h:m)	TCmax (h:m)	TPCar (h:m)	TPScar (h:m)
TEST5	Test 5h fissi	Ahnom/5	5h	1.70	10:00	13:00	1:00	0:30

3. CAPACITY RECOVERY

For Example : for a 48V 600 Ah PROG1 : TEST5 = 5, 1,70V, 5h00, 120 A PROG2 : MaxCT = 13h, MinCT = 10h

A typical charging time can be calculated as: C5 / Ch.Current * 1,1 + 4h We can than calculate the MinCT for this value and the MaxCT with 3h more

gg/mm/aa hh:mm PROG1	MaxCT=13h00m PROG2
RatV= 48 V RatAh= 600	MinCT=10h00m Mag=10%
DiscI= 120 A DT= 5h00 m	PTaC =01h00m
N.TEST5= 5 STV=1.70	PTaD=00h30m StD 1m

3. CAPACITY RECOVERY

We program the HF9 for profile STD (curve 1) or ST+ (curve 2) depending on the ratio beween Battery Capacity and Charger Current:

Profile 1 STD : when the Capacity is between 6 and 8 time the Charger current or Profile 2 ST+ : when the Capacity is between 8 and 10 time the Charger current Charging Voltage = Battery Nominal Voltage

Charging Current = C5 / N (where N is 6 to 8 (7 typical) for Profile 1 and 8 to 10 (9 typical) for profile 2)

Charging Time = not used in cyclic charge.

ID	Abbreviation	Name	Type of curve	Description
1	1 Pb STD U01	Pb Std cyclic	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 6xInom and 8xInom
2	2Pb ST+ U01	Pb Std Plus	IUIUaE	Cyclic charging curve for Pb acid battery with a capacity between 8xInom and 10xInom

